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I  used a microprocessor to control analog 
signal processing in my multi-zone home 

audio project. This approach is a good match 
for my capabilities and meets all of my goals. 
After all, analog is my favorite programming 
language.

A system could be set up digitally. In that 
case, the inputs would be either digital audio 
devices or, if they are analog, they would use 
an ADC for input. Then the source selection, 
volume, tone (filters), and other functions 
would be done digitally, either in firmware or 
by a DSP or FPGA. You could then send the 
sound digitally to the zones where a DAC or a 
“digital amplifier” could be used. Or why not 
distribute all the inputs to all the zones and 
make each zone a digital audio system? 

DIGITAL VS. ANALOG AUDIO 
A digital system would be outside my 

current skill set and would exceed my cost and 
complexity (design effort) budget. Ethernet is 
appealing for a wired system. Several pro-
audio Audio over Ethernet (AoE) systems do 
this, but they are mostly proprietary and do 
not support Wi-Fi. Sonos is one commercial 
and proprietary Wi-Fi-based system designed 
for homes. 

One AoE challenge is managing latency 
delays. Ethernet is not real time, so latency 
and thus delays are not controlled. Room-to-
room delays of more than a few milliseconds 
would create objectionable echoes. I am not 
aware of any open solutions that offer delay 
matching. 

One advantage of a centralized analog 
system is that the electronics can be located 
in one compact box. With analog, either 

speaker wires or line-level audio are run to 
each room. Wiring is simpler in a single-story 
home, but if you are an enterprising engineer 
who lives in a multi-story home, running a few 
wires probably won’t stop you. With electrical, 
phone, cable, networking, sensors, audio, and 
so forth, I have a lot of wires in my house. It 
is simple to add a few more.

The multi-zone home audio system’s 
cost per channel is roughly $120 to $150 
per zone in an eight-zone system, including 
amplifiers and speakers. A zone that already 
has powered speakers, a PC, or a boombox 
costs about $60 since line-level audio can be 
wired to existing powered speakers. This cost 
does not include the labor of stuffing boards, 
loading code, and running wires. 

Speakers can be just about anything 
including in-wall, in-ceiling, high-end, 
bookshelf, or indoor/outdoor types. I use a 
separate high-power amplifier and home-
built speakers for my living room. Figure 1 
shows the system’s design.

CPU AND CONTROLS
A home audio system needs several 

different but similarly functioning controls 
such as IR remote control to satisfy couch 
potatoes; front-panel controls for when the 
control is misplaced, or to do more complicated 
setups; remote zone controls to adjust the 
volume, source, or sound without having to 
return to the main system; and a display to 
view the status. Also, why not include a digital 
interface to enable system control from a PC? 
The challenge of all these controls is to make 
them act in a similar manner despite their 
very different electrical interfaces.

Multi-Zone Home 
Audio System (Part 2)
CPU, Controls, and

Development Tools
The first part of this article series introduced the multi-zone home audio system 

and discussed the audio hardware. This article covers the microprocessor, the 

controls, and the display. It also describes some ways to integrate digital audio 

into the system and details system issues. 

By Dave Erickson (US)
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GUI AND CONTROL STRATEGY
There are several ways to implement 

soft controls and displays. At one extreme, a 

multi-level menu system with soft keys can 

maximize the functionality of a few simple 

controls. On the other end of the spectrum, 

having one control per function enables you to 

perform functions without navigating menus.

Think of a calculator or an analog stereo 

with knobs or buttons for each basic function. 

Since it is important that my non-engineer 

family members can easily use the system, 

I used a graphic LCD combined with many 

labeled buttons for feedback.

Eight buttons select the eight zones, 

and eight more select the sources. Buttons 

for volume up and down, balance, bass, 

midrange, and treble are also included. There 

is a mute button as well as a mute-all button.

There aren’t any multi-level menus yet. 

For example, to send the PC sound to the 

kitchen and adjust its volume, first select the 

zone, kit, then the source, PC, and then use 

the Volume Up and Volume Down buttons to 

adjust the volume.

Changes are displayed on the LCD in 

real time. This interface is fairly simple and 

intuitive. The buttons are arranged in a four-

row by eight-column matrix. I color coded 

the buttons to help distinguish the functions. 

For control labeling, I used three 9-mm label 

tapes: one for the zones, one for the sources, 

and one for the other controls. I used arrays 

of ASCII strings for software labeling of the 

zones and the LCD’s inputs. This required 

a recompile to change the house or input 

configuration.

Basic functions are repeated on the IR 

remote control and the remote keypads. 

Since these functions do not have visual 

feedback, controlling a remote zone could 

create problems as you continuously increase 

the volume but hear no response. Meanwhile, 

the neighbors four houses away can hear your 

deck speakers just fine.

So, to avoid trouble, I currently control 

only the local zone with the remote keypads. 

If you need to control a different zone, you 

need to get off the couch and go to the front 

panel. It would be amazing if the system had 

a smartphone app or at least a web browser 

interface.

FIGURE 1

The system block diagram includes 

the boards, controls, amplifiers, and 

power supplies. The approximate 

component positions in the chassis 

are also shown.
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CPU BOARD
Figure 2 shows the CPU board 

schematic. It contains an STMicroelectronics 

STM32VLDISCOVERY board as a daughtercard 

and interfaces for the LCD, analog remote 

keypads, the eight-row by four-column front-

panel keypad, IR, the encoder knob, RS-232, 

and the I2C connections for the preamplifier 

control. The CPU board is built as a hand-

wired prototype but I plan to layout a PCB. 

Photo 1 shows the front-panel setup.

FIGURE 2

This is the CPU board schematic.
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FRONT-PANEL KEYPAD
The front-panel keypad is an ExpressPCB 

board containing 32 6-mm momentary 

buttons, organized as eight rows by four 

columns. The eight rows are driven by a 

PCA8571 I2C GPIO port. Its outputs are open 

collector and pulled high, so pressing multiple 

keys causes no damage. The four columns are 

wired to processor input pins. This keypad 

is scanned one column at a time in a 1-ms 

timed-interrupt routine. 

IR REMOTE
I used Sony remote control codes and 

emulated a Sony receiver. Sony codes use a 

simple protocol: a Start bit followed by 12 data 

bits. A Start bit is 2.4 µs wide, a Zero bit is 

0.6 ms, and a One bit is 1.2 µs. The five most-

significant bits (MSBs) of the 12 bits are the 

device code (CD, TV, DVD, etc.) and the seven 

least-significant bits (LSBs) are key codes.

The IR receivers detect the IR light, 

pass only the 38-kHz carrier frequency, and 

demodulate it to a CMOS logic signal. The 

firmware decodes these pulse widths and 

assembles the code.

If you haven’t dealt with an IR decoder, it 

is all about error detection. Basically if you 

ever detect an error, toss out the code. By 

this, I mean reset a bit counter and then wait 

for the next Start bit.

The STM32VLDISCOVERY board’s timers 

can directly measure pulse widths applied 

to input pins and generate an interrupt that 

informs you when a pulse has arrived. The 

next step is to read a register to get the pulse 

width and then compare the pulse widths to 

the minimum and maximum values for each 

of the Start, Zero, or one-pulse widths, which 

requires a maximum of six comparisons.

I clocked the 16-bit timer at 1 µs to provide 

plenty of resolution and to make the math 

convenient. A state machine waits in State 0 

for a valid Start pulse to arrive. When it does, 

it counts the number of valid Zero or One bits 

and shifts them into a 16-bit value. If pretty 

much anything goes wrong, reset the state 

machine to a zero count. By “going wrong,” I 

mean detecting any pulse that is not a valid 

one or zero for the next 12 pulses. When the 

count hits 13 (Start bit plus 12 data bits), you 

have a valid IR code. Well, almost.

For another test, count the number of 

identical IR codes in a row and only generate 

a valid key code when two identical codes 

arrive. IR remotes are intended to work this 

way, generating at least three identical codes 

in a row.

If you hold a button down, it continues to 

send the same code. Imagine a code being 

optically interrupted and then the end of 

another code arrives. Requiring two identical 

codes prevents this type of error. 

Why do all this testing? We are surrounded 

by IR noise (e.g., from sunlight, incandescent 

and other lights, different remote controls, 

etc.). Also the IR signal can be weak, 

interrupted by the cat, and so forth. IR 

receivers contain a 38-kHz band-pass filter 

to help eliminate most ambient light, but 

this does not remove pulses from other IR 

remotes. All this may sound complicated, but 

is only about 20 lines of C and can be done 

in the timer interrupt handler. I have reliably 

used this method on this system and the 

original Freescale Semiconductor (formerly 

PHOTO 1

The front panel includes an LCD, 

keypad, and encoder knob.
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Motorola) 68HC11 microcontroller. 

For a remote control, I used a One-For-All 

eight-channel universal remote to control all 

the equipment in my living room. These are 

low cost and readily available. 

REMOTE KEYPADS
For each remote zone, an optional keypad 

provides basic controls including volume, 

source selection, balance, and muting. Remote 

keypads should be simple, inexpensive, and 

reliable. The microprocessor’s eight-channel 

8-bit ADC was unused on the original system. 

An ADC is a terrible thing to waste, so 

I used it to read the remote keypads. Each 

keypad has eight momentary switches and 

a resistor ladder consisting of seven 1-kΩ 

resistors in series (press Button 0 and you get 

0 kΩ, press Button 1 and you get 1 kΩ, etc.). 

In this way, up to eight remote keypads can 

be read, using one ADC channel per keypad.

Back on the CPU, a simple passive circuit 

is needed to read each channel’s resistance. 

Each ADC input has a 4.7-kΩ pull-up resistor, 

a series 1-kΩ resistor, and a 0.1-µF filter 

capacitor. The 1 kΩ in series protects the 

analog pin in case of a static zap. Ideally, 

there should also be a protection diode on 

each input. 

To detect a key press, the firmware 

periodically reads the ADCs, checks the 

voltage to see if any key is pressed, compares 

the voltage to the high and low thresholds 

for each of the eight keys, and increments a 

counter to debounce the keys.

I measured only one channel in the 1-ms 

timed interrupt routine. In fact, I triggered 

the ADC to measure the next channel after 

reading the current channel. This way, the 

interrupt routine doesn’t need to wait for the 

ADC. Then the key_proc() code looks for 

50 ms of the same keys detected to confirm a 

valid key press. 

Keypad wiring uses a single unshielded 

twisted pair from the keypad back to the 

system. Polarity does not matter. However, 

running wires is inconvenient, so I am 

looking for a web interface to enable a PC or 

smartphone to control the system through a 

simple app or webpage. More on this follows. 

ENCODER KNOB
Mechanical encoder knobs are inexpensive 

and provide a nice feel. Since volume control 

is important to this system, I decided to add 

a real volume knob. Like most encoders, the 

knob uses a two-bit quadrature code. There 

are many types of encoder signal timings. 

Some encoders output four 90° steps per 

mechanical click. The one I use outputs one 

90° step per click.

The 1-ms interrupt routine reads the 

two encoder bits and combines them with 

the previous reading to build a simple 4-bit 

code from the two readings. Since this code 

contains both the current and previous states 

of the knob, a simple 4-bit (16-entry) look-

up table (LUT) can determine what action to 

take.

The LUT has entries for Up, Down, or NOP. 

Using a LUT enables the code to be changed 

to accommodate various manufacturers’ 

mechanical configurations. This LUT value 

determines whether a count value is 

incremented, decremented, or unaffected. 

The changes in the count can then be read in 

the main routine to change a setting (volume 

for now) based on whether the counter has 

increased or decreased. 

MAKING CONTROLS CONFORM
Detecting a key press is simple. Debouncing 

and making the key periodically repeat after 

being held a while is a bit more complicated. 

Making 10 or so sets of controls comprising 

three totally different electrical types (front 

panel buttons, remote analog keypads, and an 

IR remote control) all act the same requires 

some thought.

Key auto repeat is useful for volume and 

LISTING 1

An array of these control data 

structures is used, one per control. 
/* Controls structure: one per keypad. */

typedef struct {

  uint8_t  rawCode;    /* Key before LUT */

  uint8_t  rawFlag;    /* Key down from scan */

  uint8_t  keyCode;    /* Key after LUT */

  uint8_t  state;      /* State: 0-debounce 1-repeat dly 2-repeat*/

  uint8_t  sendFlag;    /* It’s good. send it */

  uint16_t repeatTimer;  /* 1ms timer for key auto-repeat */

  uint8_t  repeat;     /* 1 if key should auto-repeat */

  uint8_t  zone;      /* Current zone for this keypad */

  uint16_t zoneTimer;   /* Time until this zone resets to default */

  uint8_t  zoneDefault;  /* Zone to default back to */

  uint8_t  oldKey;     /* Previous key for filter */

}inKeyTypeDef;
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other controls. To auto repeat, time how long 

the same key is pressed and, after a few 

hundred milliseconds, send another key code. 

Then wait a few hundred more milliseconds 

and resend it. 

The IR remote presents a problem. Each 

remote generates codes at its own rate and 

repeats when the key is held down, but not 

necessarily at the repeat rate that you want. 

So a filter is needed that turns on when a key 

is pressed and times out after a period of time 

when the key is released. Then the IR buttons 

can be treated the same as any keypad. 

Another issue is that any zone can be 

controlled by the front panel. But mostly you 

want to control the local zone from that zone. 

So, after a timeout period of no activity, each 

panel defaults back to the local zone.

I do not currently control any other zone 

from the remote keypads. When I do add this 

feature, these will have the same timeout 

mechanism. 

If you combine all these requirements, 

the code can become complex. Fortunately, 

data structures are your friends. In Listing 1 

the struct TypeDef is used to control each 

keypad. An array of these structs is used, one 

for each keypad. 

In addition to the multiple control sources, 

during system debugging it is beneficial to use 

a PC keyboard to control the system and a PC 

display to output debug printf() messages 

via a terminal emulator and RS-232. I used 

a single keyboard ASCII key to emulate each 

control.

For example, “V” is volume up and “v” is 

volume down. The right inputs are selected by 

“1” through “8.” The eight zones are selected 

by “SHIFT_1” through “SHIFT_8.” It is helpful 

to choose commands you can remember. I use 

“h” for Help to display a list of the commands. 

A big case statement interprets and 

executes all the commands and uses these 

single ASCII codes as its selector. The other 

LISTING 2

This is the pseudocode for putpix() 

to write a single pixel to the display.

Set X address (x & 0x3F)

   Set bus direction OUT

   Set RW, RS, both CS

    Set data

   Pulse E 

E= 1, Delay 500ns, E = 0

   Delay(5us)

Set Y page (y >> 3)

   Set data

   Pulse E

   Delay(3us)

Pixel mask (1 >> y%7)

Read the dummy data

   Set bus direction IN

   Set RW, RS

   Select L or R chip based on X>63

   Pulse E

   Delay(5us)

Read the real data

   E = 1

   Delay(1us)

    Input data

   E = 0

   Delay(3us)

Reset X address (x & 0x3F) since the last read incremented it

   Set bus direction OUT

   Set RW, RS, both CS

   Set data

   Pulse E

   Delay(3us)

Merge the mask and the read data:  (mask | data)

Write data

   Set bus direction OUT

   Set RW, RS

   Select L or R chip based on X>63

   Pulse E

   Delay(3us)
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various controls use a small LUT to map their 
binary outputs into the same ASCII codes. 
I invented this simple method long ago and 
suspect that many others have also come up 
with it. 

A nice side effect of this technique is that 
your project has the foundation of a serial 
protocol to control it remotely. If you add a 
serial to USB chip, then presto! Your project 
has a USB interface. 

GRAPHIC LCD: THE UBIQUITOUS 
KS0108

The goals for a front-panel display are 
to show all of the parameters of one zone at 
a time and to graphically and interactively 
show the volume, balance, and tone settings. 

The LCD should be small, but 
not too small; highly visible 
in any lighting; and low cost. 
I like the look of white LED 
backlights. I decided to use a 
128 × 64 monochrome panel 
based on the KS0108 controller 
chip. These low-cost chips are 
readily available from several 
manufacturers. I chose the 
NHD-12864WG-BTFH-V from 
Digi-Key, which costs about $20. 

The hardware interface is 
straightforward. It has eight 
data bits and five control 
signals. The KS0108A uses two 
devices; each accesses one 
half of the display, so two chip 
selects are needed.

One of the first tasks of 
this project was to write the 

LCD hardware access-level code. I found a 
few examples online for KS0108 code and 
borrowed a few ideas, but finally decided to 
write my own.

I have a higher-level LCD library, which 
I have used with my own FPGA-LCD based 
controller designs since the 1990s (see my 
article “Graphics LCD Control for Embedded 
Applications,” Circuit Cellar 34, 1993). Using an 
off-the-shelf panel with its built-in controller 
was a real experience, since these chips have 
a few quirks. They are byte-oriented and the 
pixels within a byte are vertically organized. 
Since most font and bitmap files are organized 
with horizontal bytes, they would need to be 
transposed either by the microprocessor or 
before they are loaded into code. Fortunately, 
I found a 5 × 8 font designed for the KS108A. 
I haven’t needed bitmaps yet, so I haven’t had 
to face that challenge. 

GRAPHICS FUNCTIONS
To make good use of a graphics LCD, you 

need functions to draw common objects. 

Lines, filled rectangles, and ellipses (circles) 
require a pixel draw routine. Characters and 
bitmaps need a byte write function.

Display clearing and updating should 
be fast enough that you don’t notice flicker 
between the time that you clear the display 
and the time that you write the new data. 
It should be just a few milliseconds to avoid 
flicker. The fast 24-MHz ARM Cortex-M3 
processor can do the job without a lot of 
special optimizations. I used a 1-MIPS 8-bit 
68HC11 microcontroller and a larger LCD in 
this project’s previous version, so the code 
had to jump through hoops to update the LCD 
fast enough to prevent flicker. The FPGA-based 
LCD controller helped since it was designed 
to make drawing primitives fast enough with 
even a slow processor. 

The KS0108 vertical-byte data organization 
requires that fonts are eight pixels high 
including spaces. Otherwise, you would need 
to write them one pixel at a time, which 
would be quite slow. So the only practical 
small font is 5 × 7. Having your characters 
placed anywhere vertically except on a byte-
boundary is pretty painful so I accept this 
limitation.

Larger fonts fit into two or more bytes, 
but I don’t currently use these. One approach 
I have used to generate larger characters 
is to pixel replicate the small font by two or 
three times. This has the advantage of using 
only one small font table but the disadvantage 
that larger fonts can appear blocky. 

I like to render lines and circles in the 
LCD memory, so I needed to write graphics 
one pixel at a time. Sounds simple, right? 
Unfortunately with the KS0108 such a 
seemingly simple operation requires an 
inordinate amount of code. Listing 2 shows 
the pseudocode for a putpix(x, y) function 
just to write one pixel. 

Part of the complexity is the large number 
of delays needed to access this older slow 
device and to meet all its setup and hold 
timings. A pixel write requires you to do a 
read/modify/write to the memory and single 
byte reads are inefficient. To do a read, first 
a dummy read is required. Then, since the X 
address always auto increments, the address 
needs to be set back again before the real 
read. I used a 24-MHz processor with plenty 
of code space, but the delays alone add up to 
about 25 µs. I estimate about 40-µs total CPU 
time per pixel. I have not measured it. 

One thing that the KS0108 does reasonably 
well is to move a block of data from CPU 
memory to the LCD. That is because the 
addresses increment automatically after an 
access. So writing byte-aligned fonts is fairly 
fast. Another approach to manage a display 
is to render the entire display in CPU memory 

“A home audio system 

needs several different 

but similarly functioning 

controls. The challenge 

of all these controls is to 

make them act in a sim-

ilar manner despite their 

very different electrical 

interfaces.”
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much more quickly and then move the entire 
screen to the LCD (128 × 64/8 is only 1 KB). 
But for larger panels, this approach uses a 
lot more CPU memory and more time to 
update the screen. For example, a 320 × 240 
1-bit panel needs 9,600 memory bytes, so it 
would require about 10 times as long to move 
that data. Rendering graphics in the display 
minimizes CPU memory use.

Currently only two screens are displayed: 
a startup “splash” screen that displays the 
code revision and date and a single-zone 
status screen. I plan to add at least one more 
screen, using large characters, so I can read 
the source and zone from across a room. 

DEVELOPMENT TOOLS
The STM32VLDISCOVERY board modules 

are a great deal. They offer a DIP module that 
brings out every pin of the 64-pin processor 
and the ST-LINK USB debug interface, 
which is STMicroelectronics’s two-wire JTAG 
programming and debug interface, all for 
$12.

STMicroelectronics’s 2011 STM32 Design 
Challenge offered a free starter version 

fAtollic’s C development tools. Unfortunately, 
when the contest ended, Atollic imposed a 
32-KB code size limit in its free version. Since 
my code was already 49 KB and growing, this 
was a problem.

After looking at Yagarto and other toolsets, 
I found CooCox’s CoIDE, an integration of 
Eclipse, GCC, GDB, a lot of programmer and 
debugger support, and nearly every ARM 
CPU manufacturer’s device libraries, all free 
and without limitations. CooCox’s website 
has many user-supplied examples. Porting to 
CooCox was fairly painless, as is changing to 
other ARM devices. 

ARM PERIPHERALS
I am used to the peripherals on 8-bit 

devices, most recently the Atmel AVR 
microcontroller. I was surprised at the 
extensive features and complexity of 
STMicroelectronics’s ARM Cortex-M3 devices.

For example, all the GPIO ports are 16 bits 
and each bit can be controlled several ways 
by multiple registers. In addition to writing 
all 16 output bits or their direction register, 
there are multiple-bit Set and Clear registers 
for both the data and the direction registers. 
These enable multiple device handlers to 
access the same port’s individual bits without 
interference. On typical 8-bit processors, 
care must be taken to prevent interference 
between multiple device handlers. 

There are several of each type of 
peripherals. On this mid-end processor, there 
are multiple ADCs, DACs, I2Cs, UARTs, SPIs, 
timers, and so forth. Using an I/O register’s 
name directly is not a practical way to handle 
multiple devices since too many unique names 
would be required. 

STMicroelectronics offers extensive 
libraries to help write device code. At first I 
was intimidated by the dozens of functions just 
to access an I2C device, for example. However, 
once you figure out what functions you need 
to do your job, the rest goes smoothly.

Even device initialization can be daunting 
when there are dozens of registers with 
possibly hundreds of bits. To help, ARM uses 
a configuration data structure and provides 
an initialization function such as DAC_

Configuration(void). First you set the 
structure elements, then you call the function 
to transfer the struct to the device. All devices 
can be initialized in this way. 

DIGITAL AUDIO SOURCES
In our home, we currently use a standard 

desktop PC in the den as a music server to 
play our MP3 collection via Winamp and to 
stream audio from Pandora or other services. 
For a local MP3 player, a simple mini-plug 
to RCA cable will do the job, but it does not 
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CoIDE Software development environment

CooCox | www.coocox.org

68HC11 Microcontroller

Freescale Semiconductor, Inc. (formerly  

Motorola) | www.freescale.com

STM32VLDISCOVERY board and ST-LINK 

in-circuit debugger/programmer

STMicroelectronics | www.st.com



circuitcellar.com 37

F
E
A

T
U

R
E
S

provide either charging or a stand. iPod 
docking stations with audio outputs can be 
purchased for that purpose. 

GROUNDING AND HUM 
Most consumer audio gear is not power 

line grounded and uses two-wire line cords. 
The various RCA audio connections provide a 
local “ground reference” and things work well 
enough. Connecting to a single grounded audio 
source doesn’t generally create a ground loop 
or hum problem. Connecting two or more 
grounded sources creates a ground loop and, 
depending on the power line ground-voltage 
difference, can causes varying amounts of 
hum.

I chose to ground my system since it is the 
center for many audio signals throughout our 
house. Connecting to ungrounded equipment 
doesn’t present a problem, but connecting to 
other grounded equipment can cause hum.

Examples of grounded audio components 
are PCs and most cable TV boxes. A cable 
box’s RF cable is grounded where it enters the 
house for lightning protection. If you connect 
your PC or cable box to an audio system 
and don’t get hum, great. If there is hum, 
commercial audio isolation transformers will 
solve the problem. 

FUTURE FEATURES
One feature on my wish list is the ability 

to control the system from a web page. This 
would enable a smartphone or PC anywhere in 
the house to control the system. One reason 
I used a powerful ARM processor when a 
lesser CPU would probably do was to have the 
resources to someday serve up webpages and 
handle TCP/IP. 

You may ask, “So where is the webpage, 
Dave?” The truth is that I do not currently 
possess the skills to generate active webpages 
and handle file systems, TCP/IP stacks, and so 
forth.

I have seen projects that implement 
simple web servers on an 8-bit processor 
and I consider these interesting, but that is 
all. They typically do not have a real server, 
a file system (for images, HTML, etc.), or 
file management tools. They use a lot of 
sprintf() commands to render HTML or 
JavaScript on the fly. They typically do not 
have DHCP or system configuration tools.

If you open a port to the Internet, you will 
need to deal with security issues. After using 
high-level tools and real servers to write web 
pages, this approach seemed primitive. 

I like to spend my hobby time developing 
skills and systems that are applicable to my 
career or at least to a real commercial product. 
I tend to avoid developing toys, tricks, and 
hack code. So as I wait patiently for someone 
to drop a nice web server, file system, and 
TCP/IP stack for STM32 processors in my lap, 
time marches by.

At this point, I am leaning toward 
using a low-cost, low-power Linux board 
(e.g., a Raspberry Pi or BeagleBoard.org’s 
BeagleBone Black) to address these features. 
They support Apache and other web servers 
with Internet security, full local and network 
file systems, music (and video), and servers 
(e.g., XBMC), all written and supported by 
serious programmers. And it all comes in a 
credit-card size $50 board that consumes a 
watt or so.

A web browser, Pandora, or any other 
streaming web function is just a download 
away. I have not worked much with Linux on 
embedded controllers, but it is a skill I would 
like to develop. So many projects, so little 
time. 

BUILDING YOUR OWN
I used ExpressPCB to design the boards. 

If there is interest, I will offer bare PC boards 
on my website. The boards are designed with 
surface-mount technology (SMT) electronics, 
except for the connectors and the film 
capacitors, which are through-hole. The SMT 
parts are mostly 0.05” pitch and 0805 or 
larger and can be built under a magnifier by 
hand-soldering. I used ribbon cables where 
possible to minimize cable assembly labor. 
The CPU board is currently hand-wired. The 
ExpressPCB layout in available on the project 
website. 

This has been a rewarding project for me. 
If you are interested, the full ExpressPCB 
schematics, PCB artworks, BOMs, and code are 
available on Circuit Cellar’s FTP site. The 
project website is available at www.djerickson.
com/multizone.  
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