
CIRCUIT CELLAR • FEBRUARY 2014 #28328

F
E
A

T
U

R
E
S

I used a microprocessor to control analog
signal processing in my multi-zone home

audio project. This approach is a good match
for my capabilities and meets all of my goals.
After all, analog is my favorite programming
language.

A system could be set up digitally. In that
case, the inputs would be either digital audio
devices or, if they are analog, they would use
an ADC for input. Then the source selection,
volume, tone (filters), and other functions
would be done digitally, either in firmware or
by a DSP or FPGA. You could then send the
sound digitally to the zones where a DAC or a
“digital amplifier” could be used. Or why not
distribute all the inputs to all the zones and
make each zone a digital audio system?

DIGITAL VS. ANALOG AUDIO
A digital system would be outside my

current skill set and would exceed my cost and
complexity (design effort) budget. Ethernet is
appealing for a wired system. Several pro-
audio Audio over Ethernet (AoE) systems do
this, but they are mostly proprietary and do
not support Wi-Fi. Sonos is one commercial
and proprietary Wi-Fi-based system designed
for homes.

One AoE challenge is managing latency
delays. Ethernet is not real time, so latency
and thus delays are not controlled. Room-to-
room delays of more than a few milliseconds
would create objectionable echoes. I am not
aware of any open solutions that offer delay
matching.

One advantage of a centralized analog
system is that the electronics can be located
in one compact box. With analog, either

speaker wires or line-level audio are run to
each room. Wiring is simpler in a single-story
home, but if you are an enterprising engineer
who lives in a multi-story home, running a few
wires probably won’t stop you. With electrical,
phone, cable, networking, sensors, audio, and
so forth, I have a lot of wires in my house. It
is simple to add a few more.

The multi-zone home audio system’s
cost per channel is roughly $120 to $150
per zone in an eight-zone system, including
amplifiers and speakers. A zone that already
has powered speakers, a PC, or a boombox
costs about $60 since line-level audio can be
wired to existing powered speakers. This cost
does not include the labor of stuffing boards,
loading code, and running wires.

Speakers can be just about anything
including in-wall, in-ceiling, high-end,
bookshelf, or indoor/outdoor types. I use a
separate high-power amplifier and home-
built speakers for my living room. Figure 1
shows the system’s design.

CPU AND CONTROLS
A home audio system needs several

different but similarly functioning controls
such as IR remote control to satisfy couch
potatoes; front-panel controls for when the
control is misplaced, or to do more complicated
setups; remote zone controls to adjust the
volume, source, or sound without having to
return to the main system; and a display to
view the status. Also, why not include a digital
interface to enable system control from a PC?
The challenge of all these controls is to make
them act in a similar manner despite their
very different electrical interfaces.

Multi-Zone Home
Audio System (Part 2)
CPU, Controls, and

Development Tools
The first part of this article series introduced the multi-zone home audio system

and discussed the audio hardware. This article covers the microprocessor, the

controls, and the display. It also describes some ways to integrate digital audio

into the system and details system issues.

By Dave Erickson (US)

circuitcellar.com 29

F
E
A

T
U

R
E
S

GUI AND CONTROL STRATEGY
There are several ways to implement

soft controls and displays. At one extreme, a

multi-level menu system with soft keys can

maximize the functionality of a few simple

controls. On the other end of the spectrum,

having one control per function enables you to

perform functions without navigating menus.

Think of a calculator or an analog stereo

with knobs or buttons for each basic function.

Since it is important that my non-engineer

family members can easily use the system,

I used a graphic LCD combined with many

labeled buttons for feedback.

Eight buttons select the eight zones,

and eight more select the sources. Buttons

for volume up and down, balance, bass,

midrange, and treble are also included. There

is a mute button as well as a mute-all button.

There aren’t any multi-level menus yet.

For example, to send the PC sound to the

kitchen and adjust its volume, first select the

zone, kit, then the source, PC, and then use

the Volume Up and Volume Down buttons to

adjust the volume.

Changes are displayed on the LCD in

real time. This interface is fairly simple and

intuitive. The buttons are arranged in a four-

row by eight-column matrix. I color coded

the buttons to help distinguish the functions.

For control labeling, I used three 9-mm label

tapes: one for the zones, one for the sources,

and one for the other controls. I used arrays

of ASCII strings for software labeling of the

zones and the LCD’s inputs. This required

a recompile to change the house or input

configuration.

Basic functions are repeated on the IR

remote control and the remote keypads.

Since these functions do not have visual

feedback, controlling a remote zone could

create problems as you continuously increase

the volume but hear no response. Meanwhile,

the neighbors four houses away can hear your

deck speakers just fine.

So, to avoid trouble, I currently control

only the local zone with the remote keypads.

If you need to control a different zone, you

need to get off the couch and go to the front

panel. It would be amazing if the system had

a smartphone app or at least a web browser

interface.

FIGURE 1

The system block diagram includes

the boards, controls, amplifiers, and

power supplies. The approximate

component positions in the chassis

are also shown.

8× IN

Left 8 × 8
Crosspoint
MT8809

I2C to
8b GPIO

I2C

I2C Server

1TIM

7AIN

USB

PWR

Front panel

JTAG/debug interface

CPU Board

13 I/O 7 I/O 2 I/O

±12 V

12 to 30 V
0.3-A

Switching
regulator

–12 to –30 V
0.1-A
Linear

regulator

±30-VDC
Diode bridge,

filter caps

Power switch,
fuse, toroid
transformer
22 VAC × 2

DC Power supply

±30 V to amplifier boards

4× LM3886

9-V Regulator

1:4 I2C
Decoder

Four stereo channel,
I2C, ±12 V, 5 V

Stereo preamps
4× TDA7439

Volume, tone, balance

OUT (4×)

8× RCA outputs
4× Stereo

IN (4×) I2C (4×)

Stereo preamps
4× TDA7439

Volume, tone, balance

OUT (4×)

IN (4×) I2C (4×)

4P
Speaker

8P 8P

9-V Regulator

1:4 I2C
Decoder

26P

26P

26P

26P

4P
Speaker

4× LM3886

4P
Speaker

6P

6P

6P

6P

4P
Speaker

Rear panel

RS-232DE-9

DA-15 Remote
keypads

AC
In

Mechanical
encoder
(volume)

±12 V
5 V

5-V
Regulator

IR Receiver 128 × 64 LCD 8 × 4 Keypad board

±6-V Regulator

16P

16P 16P3P

3P 20P 14P 4P

4
×

 O
U

T
 4

×

8 × 8 Stereo crosspoint board Quad preamp board: CH0–3 Quad preamp board: CH4–7 2× Quad 40-W amplifier boards with heatsink

Rear panel

16× RCA inputs

16× Unity-gain buffers NE5532

Control

8× IN

Right 8 × 8
Crosspoint
MT8809

4
×

 O
U

T
 4

×

Control

8× Stereo

STM32F100RB
Discovery module

CIRCUIT CELLAR • FEBRUARY 2014 #28330

F
E
A

T
U

R
E
S

CPU BOARD
Figure 2 shows the CPU board

schematic. It contains an STMicroelectronics

STM32VLDISCOVERY board as a daughtercard

and interfaces for the LCD, analog remote

keypads, the eight-row by four-column front-

panel keypad, IR, the encoder knob, RS-232,

and the I2C connections for the preamplifier

control. The CPU board is built as a hand-

wired prototype but I plan to layout a PCB.

Photo 1 shows the front-panel setup.

FIGURE 2

This is the CPU board schematic.

circuitcellar.com 31

F
E
A

T
U

R
E
S

FRONT-PANEL KEYPAD
The front-panel keypad is an ExpressPCB

board containing 32 6-mm momentary

buttons, organized as eight rows by four

columns. The eight rows are driven by a

PCA8571 I2C GPIO port. Its outputs are open

collector and pulled high, so pressing multiple

keys causes no damage. The four columns are

wired to processor input pins. This keypad

is scanned one column at a time in a 1-ms

timed-interrupt routine.

IR REMOTE
I used Sony remote control codes and

emulated a Sony receiver. Sony codes use a

simple protocol: a Start bit followed by 12 data

bits. A Start bit is 2.4 µs wide, a Zero bit is

0.6 ms, and a One bit is 1.2 µs. The five most-

significant bits (MSBs) of the 12 bits are the

device code (CD, TV, DVD, etc.) and the seven

least-significant bits (LSBs) are key codes.

The IR receivers detect the IR light,

pass only the 38-kHz carrier frequency, and

demodulate it to a CMOS logic signal. The

firmware decodes these pulse widths and

assembles the code.

If you haven’t dealt with an IR decoder, it

is all about error detection. Basically if you

ever detect an error, toss out the code. By

this, I mean reset a bit counter and then wait

for the next Start bit.

The STM32VLDISCOVERY board’s timers

can directly measure pulse widths applied

to input pins and generate an interrupt that

informs you when a pulse has arrived. The

next step is to read a register to get the pulse

width and then compare the pulse widths to

the minimum and maximum values for each

of the Start, Zero, or one-pulse widths, which

requires a maximum of six comparisons.

I clocked the 16-bit timer at 1 µs to provide

plenty of resolution and to make the math

convenient. A state machine waits in State 0

for a valid Start pulse to arrive. When it does,

it counts the number of valid Zero or One bits

and shifts them into a 16-bit value. If pretty

much anything goes wrong, reset the state

machine to a zero count. By “going wrong,” I

mean detecting any pulse that is not a valid

one or zero for the next 12 pulses. When the

count hits 13 (Start bit plus 12 data bits), you

have a valid IR code. Well, almost.

For another test, count the number of

identical IR codes in a row and only generate

a valid key code when two identical codes

arrive. IR remotes are intended to work this

way, generating at least three identical codes

in a row.

If you hold a button down, it continues to

send the same code. Imagine a code being

optically interrupted and then the end of

another code arrives. Requiring two identical

codes prevents this type of error.

Why do all this testing? We are surrounded

by IR noise (e.g., from sunlight, incandescent

and other lights, different remote controls,

etc.). Also the IR signal can be weak,

interrupted by the cat, and so forth. IR

receivers contain a 38-kHz band-pass filter

to help eliminate most ambient light, but

this does not remove pulses from other IR

remotes. All this may sound complicated, but

is only about 20 lines of C and can be done

in the timer interrupt handler. I have reliably

used this method on this system and the

original Freescale Semiconductor (formerly

PHOTO 1

The front panel includes an LCD,

keypad, and encoder knob.

CIRCUIT CELLAR • FEBRUARY 2014 #28332

F
E
A

T
U

R
E
S

Motorola) 68HC11 microcontroller.

For a remote control, I used a One-For-All

eight-channel universal remote to control all

the equipment in my living room. These are

low cost and readily available.

REMOTE KEYPADS
For each remote zone, an optional keypad

provides basic controls including volume,

source selection, balance, and muting. Remote

keypads should be simple, inexpensive, and

reliable. The microprocessor’s eight-channel

8-bit ADC was unused on the original system.

An ADC is a terrible thing to waste, so

I used it to read the remote keypads. Each

keypad has eight momentary switches and

a resistor ladder consisting of seven 1-kΩ

resistors in series (press Button 0 and you get

0 kΩ, press Button 1 and you get 1 kΩ, etc.).

In this way, up to eight remote keypads can

be read, using one ADC channel per keypad.

Back on the CPU, a simple passive circuit

is needed to read each channel’s resistance.

Each ADC input has a 4.7-kΩ pull-up resistor,

a series 1-kΩ resistor, and a 0.1-µF filter

capacitor. The 1 kΩ in series protects the

analog pin in case of a static zap. Ideally,

there should also be a protection diode on

each input.

To detect a key press, the firmware

periodically reads the ADCs, checks the

voltage to see if any key is pressed, compares

the voltage to the high and low thresholds

for each of the eight keys, and increments a

counter to debounce the keys.

I measured only one channel in the 1-ms

timed interrupt routine. In fact, I triggered

the ADC to measure the next channel after

reading the current channel. This way, the

interrupt routine doesn’t need to wait for the

ADC. Then the key_proc() code looks for

50 ms of the same keys detected to confirm a

valid key press.

Keypad wiring uses a single unshielded

twisted pair from the keypad back to the

system. Polarity does not matter. However,

running wires is inconvenient, so I am

looking for a web interface to enable a PC or

smartphone to control the system through a

simple app or webpage. More on this follows.

ENCODER KNOB
Mechanical encoder knobs are inexpensive

and provide a nice feel. Since volume control

is important to this system, I decided to add

a real volume knob. Like most encoders, the

knob uses a two-bit quadrature code. There

are many types of encoder signal timings.

Some encoders output four 90° steps per

mechanical click. The one I use outputs one

90° step per click.

The 1-ms interrupt routine reads the

two encoder bits and combines them with

the previous reading to build a simple 4-bit

code from the two readings. Since this code

contains both the current and previous states

of the knob, a simple 4-bit (16-entry) look-

up table (LUT) can determine what action to

take.

The LUT has entries for Up, Down, or NOP.

Using a LUT enables the code to be changed

to accommodate various manufacturers’

mechanical configurations. This LUT value

determines whether a count value is

incremented, decremented, or unaffected.

The changes in the count can then be read in

the main routine to change a setting (volume

for now) based on whether the counter has

increased or decreased.

MAKING CONTROLS CONFORM
Detecting a key press is simple. Debouncing

and making the key periodically repeat after

being held a while is a bit more complicated.

Making 10 or so sets of controls comprising

three totally different electrical types (front

panel buttons, remote analog keypads, and an

IR remote control) all act the same requires

some thought.

Key auto repeat is useful for volume and

LISTING 1

An array of these control data

structures is used, one per control.
/* Controls structure: one per keypad. */

typedef struct {

 uint8_t rawCode; /* Key before LUT */

 uint8_t rawFlag; /* Key down from scan */

 uint8_t keyCode; /* Key after LUT */

 uint8_t state; /* State: 0-debounce 1-repeat dly 2-repeat*/

 uint8_t sendFlag; /* It’s good. send it */

 uint16_t repeatTimer; /* 1ms timer for key auto-repeat */

 uint8_t repeat; /* 1 if key should auto-repeat */

 uint8_t zone; /* Current zone for this keypad */

 uint16_t zoneTimer; /* Time until this zone resets to default */

 uint8_t zoneDefault; /* Zone to default back to */

 uint8_t oldKey; /* Previous key for filter */

}inKeyTypeDef;

circuitcellar.com 33

F
E
A

T
U

R
E
S

other controls. To auto repeat, time how long

the same key is pressed and, after a few

hundred milliseconds, send another key code.

Then wait a few hundred more milliseconds

and resend it.

The IR remote presents a problem. Each

remote generates codes at its own rate and

repeats when the key is held down, but not

necessarily at the repeat rate that you want.

So a filter is needed that turns on when a key

is pressed and times out after a period of time

when the key is released. Then the IR buttons

can be treated the same as any keypad.

Another issue is that any zone can be

controlled by the front panel. But mostly you

want to control the local zone from that zone.

So, after a timeout period of no activity, each

panel defaults back to the local zone.

I do not currently control any other zone

from the remote keypads. When I do add this

feature, these will have the same timeout

mechanism.

If you combine all these requirements,

the code can become complex. Fortunately,

data structures are your friends. In Listing 1

the struct TypeDef is used to control each

keypad. An array of these structs is used, one

for each keypad.

In addition to the multiple control sources,

during system debugging it is beneficial to use

a PC keyboard to control the system and a PC

display to output debug printf() messages

via a terminal emulator and RS-232. I used

a single keyboard ASCII key to emulate each

control.

For example, “V” is volume up and “v” is

volume down. The right inputs are selected by

“1” through “8.” The eight zones are selected

by “SHIFT_1” through “SHIFT_8.” It is helpful

to choose commands you can remember. I use

“h” for Help to display a list of the commands.

A big case statement interprets and

executes all the commands and uses these

single ASCII codes as its selector. The other

LISTING 2

This is the pseudocode for putpix()

to write a single pixel to the display.

Set X address (x & 0x3F)

 Set bus direction OUT

 Set RW, RS, both CS

 Set data

 Pulse E

E= 1, Delay 500ns, E = 0

 Delay(5us)

Set Y page (y >> 3)

 Set data

 Pulse E

 Delay(3us)

Pixel mask (1 >> y%7)

Read the dummy data

 Set bus direction IN

 Set RW, RS

 Select L or R chip based on X>63

 Pulse E

 Delay(5us)

Read the real data

 E = 1

 Delay(1us)

 Input data

 E = 0

 Delay(3us)

Reset X address (x & 0x3F) since the last read incremented it

 Set bus direction OUT

 Set RW, RS, both CS

 Set data

 Pulse E

 Delay(3us)

Merge the mask and the read data: (mask | data)

Write data

 Set bus direction OUT

 Set RW, RS

 Select L or R chip based on X>63

 Pulse E

 Delay(3us)

CIRCUIT CELLAR • FEBRUARY 2014 #28334

F
E
A

T
U

R
E
S

various controls use a small LUT to map their
binary outputs into the same ASCII codes.
I invented this simple method long ago and
suspect that many others have also come up
with it.

A nice side effect of this technique is that
your project has the foundation of a serial
protocol to control it remotely. If you add a
serial to USB chip, then presto! Your project
has a USB interface.

GRAPHIC LCD: THE UBIQUITOUS
KS0108

The goals for a front-panel display are
to show all of the parameters of one zone at
a time and to graphically and interactively
show the volume, balance, and tone settings.

The LCD should be small, but
not too small; highly visible
in any lighting; and low cost.
I like the look of white LED
backlights. I decided to use a
128 × 64 monochrome panel
based on the KS0108 controller
chip. These low-cost chips are
readily available from several
manufacturers. I chose the
NHD-12864WG-BTFH-V from
Digi-Key, which costs about $20.

The hardware interface is
straightforward. It has eight
data bits and five control
signals. The KS0108A uses two
devices; each accesses one
half of the display, so two chip
selects are needed.

One of the first tasks of
this project was to write the

LCD hardware access-level code. I found a
few examples online for KS0108 code and
borrowed a few ideas, but finally decided to
write my own.

I have a higher-level LCD library, which
I have used with my own FPGA-LCD based
controller designs since the 1990s (see my
article “Graphics LCD Control for Embedded
Applications,” Circuit Cellar 34, 1993). Using an
off-the-shelf panel with its built-in controller
was a real experience, since these chips have
a few quirks. They are byte-oriented and the
pixels within a byte are vertically organized.
Since most font and bitmap files are organized
with horizontal bytes, they would need to be
transposed either by the microprocessor or
before they are loaded into code. Fortunately,
I found a 5 × 8 font designed for the KS108A.
I haven’t needed bitmaps yet, so I haven’t had
to face that challenge.

GRAPHICS FUNCTIONS
To make good use of a graphics LCD, you

need functions to draw common objects.

Lines, filled rectangles, and ellipses (circles)
require a pixel draw routine. Characters and
bitmaps need a byte write function.

Display clearing and updating should
be fast enough that you don’t notice flicker
between the time that you clear the display
and the time that you write the new data.
It should be just a few milliseconds to avoid
flicker. The fast 24-MHz ARM Cortex-M3
processor can do the job without a lot of
special optimizations. I used a 1-MIPS 8-bit
68HC11 microcontroller and a larger LCD in
this project’s previous version, so the code
had to jump through hoops to update the LCD
fast enough to prevent flicker. The FPGA-based
LCD controller helped since it was designed
to make drawing primitives fast enough with
even a slow processor.

The KS0108 vertical-byte data organization
requires that fonts are eight pixels high
including spaces. Otherwise, you would need
to write them one pixel at a time, which
would be quite slow. So the only practical
small font is 5 × 7. Having your characters
placed anywhere vertically except on a byte-
boundary is pretty painful so I accept this
limitation.

Larger fonts fit into two or more bytes,
but I don’t currently use these. One approach
I have used to generate larger characters
is to pixel replicate the small font by two or
three times. This has the advantage of using
only one small font table but the disadvantage
that larger fonts can appear blocky.

I like to render lines and circles in the
LCD memory, so I needed to write graphics
one pixel at a time. Sounds simple, right?
Unfortunately with the KS0108 such a
seemingly simple operation requires an
inordinate amount of code. Listing 2 shows
the pseudocode for a putpix(x, y) function
just to write one pixel.

Part of the complexity is the large number
of delays needed to access this older slow
device and to meet all its setup and hold
timings. A pixel write requires you to do a
read/modify/write to the memory and single
byte reads are inefficient. To do a read, first
a dummy read is required. Then, since the X
address always auto increments, the address
needs to be set back again before the real
read. I used a 24-MHz processor with plenty
of code space, but the delays alone add up to
about 25 µs. I estimate about 40-µs total CPU
time per pixel. I have not measured it.

One thing that the KS0108 does reasonably
well is to move a block of data from CPU
memory to the LCD. That is because the
addresses increment automatically after an
access. So writing byte-aligned fonts is fairly
fast. Another approach to manage a display
is to render the entire display in CPU memory

“A home audio system

needs several different

but similarly functioning

controls. The challenge

of all these controls is to

make them act in a sim-

ilar manner despite their

very different electrical

interfaces.”

CIRCUIT CELLAR • FEBRUARY 2014 #28336

F
E
A

T
U

R
E
S

much more quickly and then move the entire
screen to the LCD (128 × 64/8 is only 1 KB).
But for larger panels, this approach uses a
lot more CPU memory and more time to
update the screen. For example, a 320 × 240
1-bit panel needs 9,600 memory bytes, so it
would require about 10 times as long to move
that data. Rendering graphics in the display
minimizes CPU memory use.

Currently only two screens are displayed:
a startup “splash” screen that displays the
code revision and date and a single-zone
status screen. I plan to add at least one more
screen, using large characters, so I can read
the source and zone from across a room.

DEVELOPMENT TOOLS
The STM32VLDISCOVERY board modules

are a great deal. They offer a DIP module that
brings out every pin of the 64-pin processor
and the ST-LINK USB debug interface,
which is STMicroelectronics’s two-wire JTAG
programming and debug interface, all for
$12.

STMicroelectronics’s 2011 STM32 Design
Challenge offered a free starter version

fAtollic’s C development tools. Unfortunately,
when the contest ended, Atollic imposed a
32-KB code size limit in its free version. Since
my code was already 49 KB and growing, this
was a problem.

After looking at Yagarto and other toolsets,
I found CooCox’s CoIDE, an integration of
Eclipse, GCC, GDB, a lot of programmer and
debugger support, and nearly every ARM
CPU manufacturer’s device libraries, all free
and without limitations. CooCox’s website
has many user-supplied examples. Porting to
CooCox was fairly painless, as is changing to
other ARM devices.

ARM PERIPHERALS
I am used to the peripherals on 8-bit

devices, most recently the Atmel AVR
microcontroller. I was surprised at the
extensive features and complexity of
STMicroelectronics’s ARM Cortex-M3 devices.

For example, all the GPIO ports are 16 bits
and each bit can be controlled several ways
by multiple registers. In addition to writing
all 16 output bits or their direction register,
there are multiple-bit Set and Clear registers
for both the data and the direction registers.
These enable multiple device handlers to
access the same port’s individual bits without
interference. On typical 8-bit processors,
care must be taken to prevent interference
between multiple device handlers.

There are several of each type of
peripherals. On this mid-end processor, there
are multiple ADCs, DACs, I2Cs, UARTs, SPIs,
timers, and so forth. Using an I/O register’s
name directly is not a practical way to handle
multiple devices since too many unique names
would be required.

STMicroelectronics offers extensive
libraries to help write device code. At first I
was intimidated by the dozens of functions just
to access an I2C device, for example. However,
once you figure out what functions you need
to do your job, the rest goes smoothly.

Even device initialization can be daunting
when there are dozens of registers with
possibly hundreds of bits. To help, ARM uses
a configuration data structure and provides
an initialization function such as DAC_

Configuration(void). First you set the
structure elements, then you call the function
to transfer the struct to the device. All devices
can be initialized in this way.

DIGITAL AUDIO SOURCES
In our home, we currently use a standard

desktop PC in the den as a music server to
play our MP3 collection via Winamp and to
stream audio from Pandora or other services.
For a local MP3 player, a simple mini-plug
to RCA cable will do the job, but it does not

PROJECT FILES

circuitcellar.com/ccmaterials

RESOURCES

Atollic Inc., www.atollic.com.

D. Erickson, “Graphics LCD

Control for Embedded Ap-

plications” Circuit Cellar, 34,

1993.

Digi-Key Corp.,

www.digikey.com.

ExpressPCB, www.express

pcb.com

Raspberry Pi,

www.raspberrypi.org

Sonos, Inc., Sonos system of

hi-fi wireless speakers and audio components,

www.sonos.com

Yagarto, Yet Another GNU ARM Toolchain,

www.yagarto.org

SOURCES

ARM Cortex-M3 processor

ARM, Ltd. | www.arm.com

AVR Microcontroller

Atmel Corp. | www.atmel.com

BeagleBone Black

BeagleBoard.org | www.beagleboard.org.

CoIDE Software development environment

CooCox | www.coocox.org

68HC11 Microcontroller

Freescale Semiconductor, Inc. (formerly

Motorola) | www.freescale.com

STM32VLDISCOVERY board and ST-LINK

in-circuit debugger/programmer

STMicroelectronics | www.st.com

circuitcellar.com 37

F
E
A

T
U

R
E
S

provide either charging or a stand. iPod
docking stations with audio outputs can be
purchased for that purpose.

GROUNDING AND HUM
Most consumer audio gear is not power

line grounded and uses two-wire line cords.
The various RCA audio connections provide a
local “ground reference” and things work well
enough. Connecting to a single grounded audio
source doesn’t generally create a ground loop
or hum problem. Connecting two or more
grounded sources creates a ground loop and,
depending on the power line ground-voltage
difference, can causes varying amounts of
hum.

I chose to ground my system since it is the
center for many audio signals throughout our
house. Connecting to ungrounded equipment
doesn’t present a problem, but connecting to
other grounded equipment can cause hum.

Examples of grounded audio components
are PCs and most cable TV boxes. A cable
box’s RF cable is grounded where it enters the
house for lightning protection. If you connect
your PC or cable box to an audio system
and don’t get hum, great. If there is hum,
commercial audio isolation transformers will
solve the problem.

FUTURE FEATURES
One feature on my wish list is the ability

to control the system from a web page. This
would enable a smartphone or PC anywhere in
the house to control the system. One reason
I used a powerful ARM processor when a
lesser CPU would probably do was to have the
resources to someday serve up webpages and
handle TCP/IP.

You may ask, “So where is the webpage,
Dave?” The truth is that I do not currently
possess the skills to generate active webpages
and handle file systems, TCP/IP stacks, and so
forth.

I have seen projects that implement
simple web servers on an 8-bit processor
and I consider these interesting, but that is
all. They typically do not have a real server,
a file system (for images, HTML, etc.), or
file management tools. They use a lot of
sprintf() commands to render HTML or
JavaScript on the fly. They typically do not
have DHCP or system configuration tools.

If you open a port to the Internet, you will
need to deal with security issues. After using
high-level tools and real servers to write web
pages, this approach seemed primitive.

I like to spend my hobby time developing
skills and systems that are applicable to my
career or at least to a real commercial product.
I tend to avoid developing toys, tricks, and
hack code. So as I wait patiently for someone
to drop a nice web server, file system, and
TCP/IP stack for STM32 processors in my lap,
time marches by.

At this point, I am leaning toward
using a low-cost, low-power Linux board
(e.g., a Raspberry Pi or BeagleBoard.org’s
BeagleBone Black) to address these features.
They support Apache and other web servers
with Internet security, full local and network
file systems, music (and video), and servers
(e.g., XBMC), all written and supported by
serious programmers. And it all comes in a
credit-card size $50 board that consumes a
watt or so.

A web browser, Pandora, or any other
streaming web function is just a download
away. I have not worked much with Linux on
embedded controllers, but it is a skill I would
like to develop. So many projects, so little
time.

BUILDING YOUR OWN
I used ExpressPCB to design the boards.

If there is interest, I will offer bare PC boards
on my website. The boards are designed with
surface-mount technology (SMT) electronics,
except for the connectors and the film
capacitors, which are through-hole. The SMT
parts are mostly 0.05” pitch and 0805 or
larger and can be built under a magnifier by
hand-soldering. I used ribbon cables where
possible to minimize cable assembly labor.
The CPU board is currently hand-wired. The
ExpressPCB layout in available on the project
website.

This has been a rewarding project for me.
If you are interested, the full ExpressPCB
schematics, PCB artworks, BOMs, and code are
available on Circuit Cellar’s FTP site. The
project website is available at www.djerickson.
com/multizone.

ABOUT THE AUTHOR

Dave Erickson (dave@djerickson.com) has been an electronics hobbyist since the 1960s. He earned

his BSEE in 1976. Dave worked at HP Medical, Datacube, Analogic, Zoll Medical, Teradyne, and nu-

merous startups. He currently develops electro-optic and ultrasound systems for a cardiac catheter

system at Infraredx. Dave’s electronics interests include instrumentation, audio, electronic music, and

boat electronics. He also enjoys biking and sailing. His projects are available at www.djerickson.com.

